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We discuss the motion of the particles of a liquid under the influence of driving forces 
depending on the relative positions of pairs of particles. We show that generalised 
reciprocal relations exist which relate the response to velocity distributions around a 
diffusing particle. The theory is applied to the electromigration of a K impurity in Na, 
where hitherto the configuration dependence of the driving forces has been ignored. We 
approximate as simply as possible, the new element in the calculation being to recognise 
that solvent ions in the vicinity of the impurity will suffer different driving forces from 
those in the bulk of the fluid, and this will directly influence the impurity migration. Our 
calculations indicate this to be of considerable importance. 

We also indicate how results relating diffusion coefficients to current-current correla- 
tion functions, of a type obtained previously be a velocity-field approach, may be 
obtained from the present formalism. 

Key Words: Particle motion, electromigration, driving forces. 

1 INTRODUCTION 

While of general interest, the problem of the response of a classical 
liquid to relative (configuration-dependent) driving forces is of particu- 
lar relevance to the theory of electromigration in alloys. In recent years 
the Faber-Ziman theory of the resistivity has been extended to yield 
expressions for the electromigration driving forces (Faber 1972, Sor- 
be110 1978). Within this theory the total force on ion i is of the form xj F'j where (using the convention of summation over a repeated suffix) 
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106 W. JONES AND G. C .  BARKER 

Here E is the electric field and 

where z is the relaxation time, u,(k) the scattering form factor for ion i 
(in practice we use single-centre t matrices) and c i j  is the position of i 
relative to j .  

It is evident from these equations that the driving forces are configu- 
ration dependent, but hitherto the response of the ions has been 
analysed as if the driving forces were constant at the values given by 
configuration averaging. In the following we shall develop the formal 
theory of the response to relative forces with a pairwise dependence as 
in eq. (1.1). In applying the theory to a K impurity in Na, as a first 
attempt to include configuration dependence as an actual calculation, 
we shall use the simplest set of approximations possible. With these 
approximations the driving force on the impurity itself will be averaged 
as before, the new element of the calculation being to recognise that 
solvent ions in the vicinity of the impurity will suffer different driving 
forces from those in the bulk of the fluid and this will indirectly 
influence the impurity migration. 

We have chosen Na-K for a particular reason. Using scattering form 
factors given by Mayer, Nestor and Young (1967), corresponding to a 
bare ion crudely screened by a shell of charge positioned so as to satisfy 
the Friedel sum rule, the correct direction of migration (in the same 
direction as the electrons) is predicted for the K impurity without 
introducing configuration-dependence (Sorbello 1978, Jones and Dun- 
leavy 1979). This is in contrast to potentials constructed in a much 
more sophisticated manner by Rasolt and Taylor (1975) following the 
procedure of Dagens, Rasolt and Taylor (1975); here the direction of 
migration is incorrect despite an accurate prediction of the total 
resistivity (Barker and Jones, 1984). 

We shall begin (in Section 2) with a formulation of linear response 
theory appropriate to our problem. In section 3 we introduce the 
approximations we shall make, these being correct in the hydrodyn- 
amic limit. We then (Section 4) apply our results in K in Na, while 
finally (Section 5) we discuss the significance of our results. We should 
also remark that, as a matter of general interest, in an appendix we shall 
show how results, relating diffusion coefficients to current-current 
correlation functions, and of a type obtained previously by Gaskell and 
Miller ( 1  978) using a velocity field approach, may be obtained from the 
formulation for the response to relative forces. 
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THEORY OF ELECTROMIGRATION 107 

2 LINEAR RESPONSE 

Let us suppose a force Fk(rlo, rzo, .  . .) is applied to particle k, the force 
depending on the positions of the particles relative to the particular 
particle 0. The general result of linear response theory for f the 
change from the equilibrium distribution functions f describing the 
ensemble, has been given previously (Jones and Barker 1985). If the F, 
are independent of velocity one finds 

f l  =-1 j' ds f 0 eXp[&(t - s)]Fk.Vk (2.1) 

Here L is the appropriate Liouville operator (so Lf, = 0) and V, the 
velocity of particle k evaluated, like F,, at s = 0. We have omitted a 
convergence factor eqt (q + + 0) which may be reinserted if necessary. 

If the F, are independent of the time, a change of variable brings (2.1) 
into the form 

kBT - m  

1 "  
f1=k,TJb 0 eXp( -iLt)Fk.Vk dt (2.2) 

As we have previously shown (Jones and Barker, 1985) the above 
results for f do not rely on the existence of a classical hamiltonian 
giving rise to Fk.  In fact, while the electromigration driving forces 
cannot be written as gradients of a many-body potential, they do arise 
from a hamiltonian involving vector-potentials. These give rise to 
velocity dependent forces, which, however, are of second order in the 
electric field. The mean velocity of particle 0 may now be written as 

Vfio = f, V,, dT = __ dt d r f o  Vfioe-iL'Fk, V,, (2.3) s kBT som I 
where dT denotes integration over all positions and momenta. On 
expanding e-iLt in powers of L, the resulting integrations may be 
performed by parts to yield 

or 

vf10 = JOm dt(Fak(rlO, r20 b(o)qO(t)> (2.5) 
B 

where ( ) denotes the usual equilibrium statistical average, with 
momenta and co-ordinates at t = 0 and V ( t )  = e"'V(0). 
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108 W. JONES AND G. C. BARKER 

We shall specifically discuss the electromigration of an isolated 
impurity, in which case, as we can see from Eq. (1.2), we are interested in 
forces with four different types of dependence. 

Setting i = j  = 0 we have the direct scattering force on ion 0, and 
there is no configuration dependence at all. Then since the liquid is 
isotropic, 

- v,, = F y p  (2.6) 
where 

is just the mobility of the impurity 0. 
Secondly, setting i = 0 andj  = k # i in (1.1) and (1.2) a total force on 

0 of Cj Fzj(rio), where j represents the solvent ions. We may write the 
response to this as 

where 

Next, setting i = k,  j = 0, we have forces Fp(rko) acting on the 
particles of the solvent. Each of these produces a drift velocity 

(2.10) 

where 

Lastly, when i, j # 0, we are also concerned with forces Fik(rkj) where rkj 
is the position of particle k relative to a second solvent particlej. Such a 
force produces a drift velocity of the impurity given by 

Fp0 = gdr  dr’ F$(r - r’)p$(r’, r )  (2.12) 

with 
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THEORY OF ELECTROMIGRATION 109 

We should note at this point the existence of generalised reciprocal 
relations for p$ and &. For example, if a constant force F, is applied 
to the impurity then from (2.1) the velocity distribution of the solvent 
ions relative to the impurity is given by 

vpk(r) = 1 JOm d t  JdTf,d(r - r k ) f o V k p e - i L ' ~ o F a O  (2.14) 
kBT 

Time reversal symmetry implies that e - may be replaced by eiLr under 

the integral sign d r ,  so that i 
Suppose we define v(u, r) as the velocity 

impurity, which has a drift velocity u. Thus 
value of the velocity given that the particle 
From (2.1 1) we may then write 

(2.15) 

distribution around the 
v(u, r) is the expectation 
is at relative position r. 

P:;(r) = nPup(u, r>go(r) (2.16) 

where Q is a unit vector in the direction a and ng,(r) gives the 
distribution of solvent ions around the impurity. Equation (2.12) is the 
form we shall use below. 

One may similarly write 

p$(r, r') = pV,(b, r, r f )  no@, r f )  (2.17) 

where V(u, r, r') is the expectation value of the velocity of a particle at 
position r relative to the impurity diffusing with mean velocity u, given 
that there is a third particle at relative position r'. The function n,(r, r') 
is the probability of the presence of solvent ions at r and r', given that 
there is an impurity at the origin. 

3 HYDRODYNAMIC APPROXIMATION 

To make progress in investigating the response of an impurity we shall 
approximate by setting 

Pap(') = ~ 6 . p  (3.1) 
and 

Vp(Q, r, r f )  = V,(b, r) (3.2) 
As some justification for (3.1) we note that in a liquid the environment 
of the impurity will remain roughly constant during diffusion (unlike 
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110 W. JONES A N D  G. C. BARKER 

that of an impurity diffusing by jumping through a lattice). We might 
therefore hope that the driving force on the impurity, xi Fo(rjo), also 
remains roughly constant, so that the response is given by p. As far as 
(3.2) is concerned, we argue that the dense packing effects existing in 
liquids (see Balucani et al.) imply that given the position of a particle at 
relative position r the distribution of other particles around the 
impurity is to a considerable extent determined, in which case (3.2) 
follows as a reasonable approximation. These arguments will even- 
tually require further examination but for the present we shall accept 
(3.1) and (3.2) as the simplest approximations we can make. We should 
note that (3.1) forms the basis of the usual analysis of the response to 
electromigration. The new element here is that we no longer ignore the 
effects of forces on ions near the impurity. 

Equations (3.1) and (3.2) are what we would expect if 0 were a 
relatively large particle, in which case one could take for V(u, r) the 
hydrodynamic (Stokes flow) result. In this connection one might note 
that by taking the hydrodynamic approximation for 5: dt(ja(q)js(q, t ) )  
one obtains from (A.13) of the appendix the usual Stokes-Einstein 
formula for the diffusion coefficient of a sphere in a fluid (see Balucani et 
af. 1985) and, with a equal to the mean interparticle spacing one finds 
surprisingly good agreement with experiment. Computer experiments 
(Alley and Alder 1983) also show that flow is hydrodynamic-like on a 
much smaller scale than might have been anticipated. This encourages 
us to use the form 

(3.3) 

which is in the standard result for hydrodynamic flow around a sphere 
of velocity u (Landau and Lifshitz 1962). Here A and B are constants 
with respective values 3R/4 and R3/4 (R being the radius of the sphere) 
for stick boundary conditions. For slip boundary conditions the values 
are a little different, but this is of no consequence to an order-of- 
magnitude calculation, as here. 

4 ELECTROMIGRATION OF K IN Na 

Electromigration experiments are analysed under the assumption that 
the driving force is steady and it is usual to write this force as F = eZ*E 
where Z* is an effective valence for the impurity. (The drift velocity is 
then pF where the mobility p may be obtained in terms of the diffusion 
coefficient by means of the Nernst-Einstein relation). We are now in a 
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THEORY OF ELECTROMIGRATION 1 1 1  

position to write down an expression for Z* taking some account of 
configuration dependence of the actual driving forces. We write 

z* = z; + ZZd (4.1) 

where Z:  is the usual expression for the effective valence, so that EZtE 
is the electrostatic force on the ion ezE (where 2 is the actual valence) 
plus the force due to electron scattering, averaged over configuration. 
We shall correct this by adding on the contribution 22,E. To obtain 
this we use the approximations (3.1) and (3.2) and the Kirkwood 
superposition approximation for no(r, r') in (2.16). For simplicity we 
shall use a substitutional model in which the three independent pair 
correlations are represented by a single function (apart from a factor of 
the density). This approximation is known to be a good one for binary 
alloys in which the two species are chemically similar and particularly 
so for Ka-K (Ashcroft and Langreth 1967). Then if E is in the tl 
direction (the direction of u), we find 

Zzd = n drg(r)Vp(G, r)[f$(r) + Smpze + n dr'f$(r')g(r')g(r - r')] 

(4.2) 
s s 

where i , j  refer to Na ions and g(r) is the pair function for Na. In the 
pure liquid the electrostatic force on an ion will, on average, be 
balanced by the force due to the scattering of the conduction electrons 
(see for example, Jones and Dunleavy 1979), so that 

r 
ZeE,  + nEp J f$ (r)g(r) dr = 0 (4.3) 

Thus equation (4.2) becomes 

drg(r)%(B(C1, r)[f$(r) + n dr'f$(r')g(r')[g(r - r') - 111 f 
(4.4) 

We take g(r) to agree with the X-ray results from Greenfield et al. 
(1971). The value of R in (4.3) was set at 3.27 A, the value of which g ( r )  
rises abruptly from zero, as calculated by Hansen and Schiff (1973), 
whose theoretical results are in good accord with the experimental ones 
of Greenfield et al. The scattering form factors were calculated with two 
sets of phase shifts, those given by Meyer, Nester and Young (1967) and 
those calculated by Rasolt and Taylor (1975) following the procedure of 
Dagens et al. (1975). These give Z $  = - 1.57 and 2: = 1.081 respec- 
tively. Thus the MNY result agrees as to sign with experiment, for 
which Z* = - 8  (see Sorbello 1978)-this sign implying that the 
impurity moves in the same direction as the conduction electrons-but 
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112 W. JONES A N D  G. C. BARKER 

the ST result does not. However, the respective values of z z d  are - 2.77 
and -2.0. The total Z* for MNY phase shifts is thus -4.38 while the 
total ST result is -0.94. These are still well below the experimental 
value but the important point is that ZZd is comparable to 22 and, 
furthermore, the inclusion of configuration dependence through 2 Z d  is 
sufficient to bring the ST result into agreement with experiment as far as 
direction of electromigration is concerned. 

5 CONCLUSIONS 

The exploratory calculation reported above indicates that it is impor- 
tant to take explicit account of the configuration dependence of driving 
forces in electromigration and that the failure of earlier calculations 
using an ST potential to give the correct direction of the migration of K 
in Na is not necessarily a defect of the ST potential in itself. However, in 
the ST procedure one uses linear screening when extrapolating from the 
density of the original calculation to other densities. This may not be 
valid for K in Na and, accordingly, we have embarked on a full self- 
consistent calculation, with non-linear screening for ions immersed in 
an electron gas, right across the concentration range of Na-K alloys; 
we hope to report on this at a later date. 

As far as our approximations in calculating the response to relative 
forces are concerned, our choice of V(h, r) as the hydrodynamic result 
will of course eventually require improvement. However the assump- 
tion most urgently in need of examination is that of (3.1), which is 
equivalent to configurationally-averaging the direct driving force, as 
already remarked. Referring to Eq. (2.9), we see that we have a function 

which we have here expressed as the probability ngo(r), that there is an 
ion at position r relative to the impurity, times the self velocity 
correlation function ( Vao(0)Vpo(t))r, which measures the correlation 
between velocities of the same particle at  two different times, given that 
there is a particle at relative position r at the earlier time. The most 
direct way of calculating this quantity would be by means of a 
molecular dynamics calculation, and one could similarly calculate 
pap(r, r’) and the velocity distributions V(u, r) and V(u, r, r’). Such 
calculations would of course be of much more general interest that 
simply furnishing the quantities needed in calculating the response to 
electromigration, but would also give details of the relative diffusion of 
particles in equilibrium. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY OF ELECTROMIGRATION 113 

References 

Alley, W. E., Alder, B. J., Phys. Rev., A27, 3158 (1983). 
Ashcroft, N. W., Langreth, P. C., Phys. Rev., 159, 500 (1967). 
Balucani, U., Vallauri, R., Gaskell, T., Guri, M., J .  Phys., Cl8, 3133 (1985). 
Barker, G. C., Jones, W., J .  Phys., F14,437 (1984). 
Dagens, L., Rasolt, M., Taylor, R., Phys. Rev., B l l ,  2726 (1975). 
Faber, T. E., Theory of Lequid Metals (Cambridge University) (1972). 
Gaskell, T., Miller, S. ,  J. Phys., C11, 3749 (1978). 
Greenfield, A. J., Wellendorf, J., Wiser, N., Phys. Rev., A4, 1607 (1971). 
Hansen, J. P., Schiff, D., Mol.  Phys., 25, 1281 (1973). 
Jones, W., Barker, G. C., J. Phys., C18, 3119 (1985). 
Jones, W., Dunleavy, H. N., J .  Phys., F5, 1289 (1979). 
Landau, L. D., Lifshitz, E. M., Fflrid Mechanics, Pergamon, London (1959). 
Meyer, A,, Nestor, C. W., Young, W. K., Proc. Phys. SOC., 92,446 (1967). 
Rasolt, M., Taylor, R., Phys. Rev., 311, 2717 (1975). 
Sorbello R. S., Phys. Stat. Sol. b, 86, 671 (1978). 

Appendix Connection with results of velocity 
field approach 

Consider the application of impulse forces so that the force on particle i 
is F(rio)S(t) and the total force xi F(rio)S(t). From Eq. (2.1) we obtain 
(after an integration over r by parts, as in Section 2), as the mean 
(ensemble average) velocity of particle 0 after time t 

In fourier transform, 

where 

jfq) = C Vigiq"i 
i 

Let us now take F,(r) = f(r), where 

f ( r ) =  1 r < a 

0 r > a  
64.4) 

We should note then Eq. (A.l) is valid if we include the possibility i = 0. 
Then if u is less than the minimum separation between particle 0 and 
any other particle then the only term contributing to the right hand side 
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114 W. JONES AND G. C. BARKER 

of (A.l) is in fact that for which i = 0, so that 

( A 3  
1 

<vpo>, = ~ (T/,o(O)T/go(t)) 
kl3T 

the correct result when unit impulse force is applied to a single particle. 
But from (3.2) we also have 

i r  

and it can be seen, in comparison with (3 .3 ,  that the velocity autocorre- 
lation function for particle 0 is given by 

( ~ / , O ( o ) v p o ( t )  = j d q  f ( q ) ( j a ( q ) ~ I o ( t ) e - ' q ' ' " )  (A.7) 

It will further be seen that if only one type of particle exists we may 
replace 0 by j and sum over a l l j  to obtain 

N(I/B(O)), = ~ dr dr' f(r  - r') qo(t)b(r - r0)) (A.8) kBT ' 1  
so that (2.10) becomes 

This result (for CI = b) has been obtained by Gaskell and Miller (1978) 
utilising the velocity-field concept. Gaskell and Miller then assume that 
the time zd taken for an atom to diffuse an interparticle spacing is much 
longer than the time z taken for the velocity-correlation function to 
decay to zero and on that basis replace r j  = rj(0) by rj(t) in (A.9), so 
that the equation may be written 

<vai(o)vpi(t)) = Jdq f(q)<ja(qlj@(q, t )>  (A.lO) 

This forms the basis of a successful treatment of the self-diffusion 
coefficient in a pure fluid. It is usual to fix a as the mean-interparticle 
spacing (see Balucani et al. 1985). In the present approach, a can be less, 
but if we regard the ionic motion as a combination of vibrational and 
diffusive motion, then given z G z d  we also require a to be greater than 
the amplitude of the vibrations about the mean position. Given this we 
may extend the result (A.lO) to binary fluids. For particles of types 1 
and 2 we may write 

(A.11) 
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